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Abstract In the present work, we intend to derive conditions characterizing globally
optimal solutions of quadratic 0-1 programming problems. By specializing the problem
of maximizing a convex quadratic function under linear constraints, we find explicit global
optimality conditions for quadratic 0-1 programming problems, including necessary and suf-
ficient conditions and some necessary conditions. We also present some global optimality
conditions for the problem of minimization of half-products.
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1 Introduction

Quadratic optimization problems cover a large spectrum of situations. They constitute an
important part in the field of optimization. These problems can be written as follows:

min f (x) = 1
2 xT Qx + bT x

s.t. x ∈ C.

The constraints can be given by quadratic functions, linear functions or integers. Such prob-
lems have many diverse applications, see e.g.,[1,7,8,14,23]. Due to the importance of qua-
dratic 0-1 problems, various approaches for solving these problems have been developed,
see e.g., [9,13,20–22]. But tackling them from the global optimality and duality viewpoints
is not as yet at hand. However, some situations are well understood. When there is only one
quadratic constraint g(x) = 1

2 xT Q1x + bT
1 x ≤ 0, J.J. More obtained the sufficient and

necessary condition of x̄ being a global solution of (P) was that the KKT conditions held at x̄
and Q + µQ1 was positive semidefinite, see [19]. This result has been explored by PENG-
Jiming and YUAN-Yaxiang for the case where (P) has two general quadratic inequality
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constraints in [24] in 1997. In [6], G. Danninger considered the concave quadratic problems
and reformulated a global optimality criterion into copositivity conditions. In 2001, by using
the term of ε − subdi f f erentials of convex functions and ε − normal directions, J.-B.
Hiriart-Urruty derived conditions characterizing a globally optimal solution for the problem
of maximizing a convex quadratic function under several convex quadratic constraints in
[11]. In 2000, with regard to the quadratic problems with binary constraints, A. Beck and
M. Teboulle established a sufficient and a necessary global optimality conditions, which are
expressed in a simple way in terms of the problem’s data. In the literature [15–18], some
global optimality conditions have been given recently.

In this paper, we pursue the goal of characterizing the global solutions of a quadratic opti-
mization problem. We emphasize nonconvex optimization problems presenting some specific
structures like quadratic 0-1 programming problems. There is a necessary and sufficient con-
dition for a feasible point to be a global maximizer of a convex quadratic function under
linear constraints. Through this work, we intend to derive conditions characterizing globally
optimal solutions in the problem of quadratic 0-1 programming problems. We find explicit
global optimality conditions of it, including necessary and sufficient conditions and some
necessary conditions. The necessary conditions can be checked rather easily and actually
implemented. It is interesting that some necessary conditions expressed here are given with
lower dimensions than the primal problem. We notice that there is some relations between
our results and the results in [2]. If we weaken the sufficient condition in [2], complemented
with another condition, the sufficient global optimality condition given by A. Beck and M.
Teboulle becomes a necessary and sufficient global optimality condition of quadratic 0-1
problem. Also the necessary condition in [2] can be modified as a necessary and sufficient
condition by combining with another condition which is mixed first and second order infor-
mation about the data.

This paper consists of five sections. Section one is an introduction. With some known
results, section two discusses global optimality conditions in maximizing a convex quadratic
function under linear constraints or box constraints. Some global optimality conditions of
quadratic 0-1 programming problems are given in section three. Section four discusses the
problem of minimization of half-products, which is a classical class quadratic 0-1 optimi-
zation problem. Furthermore, in section five, we try to reduce the dimensions in our global
optimality conditions and give some necessary conditions for quadratic 0-1 programming
which may be helpful to taken away some feasible points from the set of the global solu-
tions.

Throughout this paper, we will use the following notations and definitions. For a vector
x ∈ Rn, the Euclidean norm (l2 − norm) and l∞ − norm are denoted, respectively, by
‖x‖ := (

∑n
i=1 x2

i )
1/2 and ‖x‖∞ := max1≤i≤n |xi |. Let {ei }n

i=1 be the canonical basis of Rn ,
and let the vector of all 1’s be denoted by e, i.e., e = (1, . . . , 1)T . Also we denote λ1(·) as
the largest eigenvalue of a matrix and λn(·) as the smallest eigenvalue of it.

2 Quadratic programming with linear constraints

In this section, we consider the problem of maximizing the convex quadratic function under
linear constraints. This can be viewed as a particular case of the general situation where a
convex function is maximized over a convex set. Let f : Rn → R be convex and let C
be a nonempty closed convex set in Rn . Two mathematical objects are useful in deriving
optimality conditions in the problem of maximizing f over C , refer to [10].
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Definition 2.1 For ε ≥ 0, the ε− subdi f f erential of f at x̄ , denoted as ∂ε f (x̄), is the set
of d ∈ Rn satisfying f (x) ≥ f (x̄)+ dT (x − x̄)− ε,∀x ∈ Rn.

Definition 2.2 For ε ≥ 0, the ε− normal directions to C at x̄ ∈ C , denoted as Nε(C, x̄), is
the set of d ∈ Rn satisfying dT (x − x̄) ≤ ε for all x ∈ C .

The following general result characterizes a global maximizer x̄ ∈ C of f over C.

Theorem 2.3 [10] If f (x) is convex and C is a nonempty closed convex set, then x̄ ∈ C is
a global maximizer of f over C if and only if for all ε > 0,

∂ε f (x̄) ⊂ Nε(C, x̄).

Instead of using the rough definitions (2.1) (2.2), an alternate way of exploiting Theorem 2.3
is to go through the support functions of ∂ε f (x̄) and Nε(C, x̄).

Definition 2.4 The support function of ∂ε f (x̄), denoted as f ′
ε(x̄, ·), is the so called ε-direc-

tional derivative of f at x̄ :

d ∈ Rn 
→ f ′
ε(x̄, d) = inf

t>0

f (x̄ + td)− f (x̄)+ ε

t
.

Definition 2.5 The support function of Nε(C, x̄), denoted as (Ic)
′
ε(x̄, ·), is the so called

ε-directional derivative of the indicator function Ic at x̄ :

d ∈ Rn 
→ (Ic)
′
ε(x̄, d) = inf

{ε

t
: t > 0, x̄ + td ∈ C

}
.

So Theorem 2.3 can be reformulated by making use of above support functions.

Theorem 2.6 [11] If f(x) is convex and C is a nonempty closed convex set in Rn, then x̄ ∈ C
is a global maximizer of f over C if and only if for all ε > 0

f ′
ε(x̄, d) ≤ (Ic)

′
ε(x̄, d).

In [6] and [3], following quadratic minimization problem was discussed

(P0) max f (x) = 1
2 xT Qx + bT x

s.t. Ax ≤ c,

where Q is a positive semidefinite matrix. For this special quadratic case, G. Danninger
proved Theorem 2.3 directly and reformulated the global optimality condition into coposi-
tivity conditions in [6]. Similarly, for the following quadratic programming problem

max f (x) = 1
2 xT Qx + bT x

(P) s.t. aT
j x ≤ b j , j = 1, . . . ,m,

aT
j x = b j , j = m + 1, . . . , s,

the feasible set is C = {x : aT
j x ≤ b j , j = 1, . . . ,m; aT

j x = b j , j = m + 1, . . . , s}, and it
is a closed and convex set. For the convenience of following discussion, we reformulate G.
Danninger’s results for problem (P) here.

For x̄ ∈ C and d ∈ Rn , from [6] and [3], by Theorem 2.6, f ′
ε(x̄, d) ≤ (IC )

′
ε(x̄, d) means

dT (Qx̄ + b)+
√

2εdT Qd ≤ ε

td
, for all ε > 0, (1)
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where

td = sup{t > 0 : x̄ + td ∈ C}
= sup{t > 0 : taT

j d ≤ b j − aT
j x̄, j = 1, . . . ,m;

taT
j d = 0, j = m + 1, . . . , s}.

Denote I (x̄) = { j : a j x̄ = b j , 1 ≤ j ≤ m}. For j ∈ I (x̄), b j − aT
j x̄ = 0, so when

aT
j d ≤ 0, taT

j d ≤ b j − aT
j x̄ will hold for t ∈ (0,+∞). For j �∈ I (x̄), 1 ≤ j ≤ m, we

have b j − aT
j x̄ > 0. If aT

j d ≤ 0, taT
j d ≤ b j − aT

j x̄ always holds for t ∈ (0,+∞). If

aT
j d > 0, then taT

j d ≤ b j − a j x̄ holds for t ∈
(

0,
b j − aT

j x̄

aT
j d

)

. For j = m + 1, . . . , s,

only when aT
j d = 0, x̄ + td ∈ C holds for t ∈ (0,+∞). So we can denote T (x̄) =

{d ∈ Rn : aT
j d ≤ 0, j ∈ I (x̄); aT

j d = 0, j = m + 1, . . . , s} and for d ∈ T (x̄), let

Jd = { j : aT
j d > 0, j �∈ I (x̄), 1 ≤ j ≤ m}. Then for d ∈ T (x̄), td = min j∈Jd

b j − aT
j x̄

aT
j d

if

Jd �= ∅; and td = +∞ if Jd = ∅.
Obviously td should be finite otherwise (1) will not hold for all ε > 0. Thus when Jd �= ∅,

let α = √
ε, ψ(α) = dT (Qx̄ + b)+ α

√
2dT Qd − α2

td . The inequality (1) becomes

ψ(α) ≤ 0 for all α > 0. (2)

We can prove here (2) is equivalent to

ψ(α) ≤ 0 for all α ∈ R. (3)

(3) holds if and only if

� =
(√

2dT Qd
)2 − 4

(

− 1

td

)

dT (Qx̄ + b) ≤ 0. (4)

It is obvious that (4) can be written as

dT Qd ≤ −2dT (Qx̄ + b)

td
.

Moreover, dT (Qx̄ + b) ≤ 0 is necessary to ensure the above inequality holding because Q
is positive semidefinite.

We recapitulate the above arguments in the following theorem and a full proof for problem
(P0) can be found in [6].

Theorem 2.7 Consider the problem (P). If Q is a positive semidefinite matrix, then a feasible
point x̄ is a global solution of (P) if and only if for d ∈ T (x̄) such that Jd �= ∅, the following
two conditions hold:
(2.7.1) dT (Qx̄ + b) ≤ 0;

(2.7.2) dT Qd ≤ −2dT (Qx̄ + b)
td , td = min j∈Jd

b j − aT
j x̄

aT
j d

,

where I (x̄) = { j : a j x̄ = b j , 1 ≤ j ≤ m}, Jd = { j : aT
j d > 0, j �∈ I (x̄), 1 ≤ j ≤ m},

T (x̄) = {d ∈ Rn : aT
j d ≤ 0, j ∈ I (x̄); aT

j d = 0, j = m + 1, . . . , s}.
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Example Consider following problem

max f (x) = x2
1 + x2

2
s.t. x1 + 4x2 ≤ 6, x1 ≤ 2, x1, x2 ≥ 0.

Here Q = 2I , b = 0. There are four constrains: g1(x) = x1 + 4x2 ≤ 6, g2(x) = x1 ≤ 2,
g3(x) = −x1 ≤ 0, and g4(x) = −x2 ≤ 0. a1 = (1, 4)T , a2 = (1, 0)T , a3 = (−1, 0)T ,
a4 = (0,−1)T .

For x̄ = (2, 1)T , I (x̄) = {1, 2}, T (x̄) = {d ∈ R2 : d1 + 4d2 ≤ 0, d1 ≤ 0}. If d ∈ T (x̄),
then dT (Qx̄ + b) = 2(2d1 + d2) = 1

2 (7d1 + d1 + 4d2) ≤ 0, the condition (2.7.1) holds.
Four cases arise in the process of checking the condition (2.7.2).

Case 1: d1 = 0, d2 ≤ −1
4 d1 = 0. Since aT

3 d = 0 and aT
4 d = −d2, we have Jd = ∅

when d2 = 0, and when d2 < 0, Jd = {4}, td = 0 − aT
4 x̄

aT
4 d

= − 1
d2

. dT Qd =

2(d2
1 + d2

2 ) = 2d2
2 , −2dT (Qx̄ + b)

td = 4d2(2d1 + d2) = 4d2
2 , thus (2.7.2) holds.

Case 2: 2d2 ≤ d1 < 0. Since aT
3 d = −d1 > 0 and aT

4 d = −d2 > 0, we have Jd = {3, 4},
td = min

(
0 − aT

3 x̄
aT

3 d
,

0 − aT
4 x̄

aT
4 d

)

= min
(−2

d1
, −1

d2

)
= − 1

d2
. By 2d2 − d1 ≤ 0,

d1(2d2 − d1) ≥ 0, d2
2 + 4d1d2 − d2

1 = d2
2 + 2d1d2 + d1(2d2 − d1) ≥ 0, thus

dT Qd = 2(d2
1 + d2

2 ) ≤ 4d2(2d1 + d2) = −2dT (Qx̄ + b)
td , (2.7.2) holds.

Case 3: d1 < 2d2 < 0. Similar as case 2, Jd = {3, 4}, but td = − 2
d1

. Since d1 < 2d2 <

d2 < 0, d2(d1 − d2) > 0, d2
1 + d1d2 − d2

2 = d2
1 + d2(d1 − d2) > 0, we also have

dT Qd = 2(d2
1 + d2

2 ) < 2d1(2d1 + d2) = −2dT (Qx̄ + b)
td , (2.7.2) holds.

Case 4: d1 < 0 ≤ d2 ≤ −1
4 d1. Since aT

3 d = −d1 > 0 and aT
4 d = −d2 ≤ 0, we obtain

Jd = {3}, td = − 2
d1

. Hence d1d2 ≥ −1
4 d2

1 , −d2
2 ≥ − 1

16 d2
1 , and d2

1 +d1d2 −d2
2 ≥

d2
1 − 1

4 d2
1 − 1

16 d2
1 = 11

16 d2
1 ≥ 0. Thus dT Qd = 2(d2

1 + d2
2 ) ≤ 2d1(2d1 + d2) =

−2dT (Qx̄ + b)
td , (2.7.2) holds.

Now for all d ∈ T (x̄), the condition (2.7.1) and (2.7.2) hold, x̄ = (2, 1)T is the global
maximum.

In fact, x2
1 +x2

2 is a convex function and the feasible domain is a polytope. If it has an opti-
mal solution, then the optimal solution is attained at a vertex of the polytope. There are four
vertices of the polytope: x (1) = (2, 1)T , x (2) = (2, 0)T , x (3) = (0, 1.5)T and x (4) = (0, 0)T .
f (x (1)) = 5, f (x (2)) = 4, f (x (3)) = 2.25, f (x (4)) = 0. So x (1) = (2, 1)T = x̄ is the global
maximum.

For x (2) = (2, 0)T , I (x (2)) = {2, 4}, T (x (2)) = {d ∈ R2 : d1 ≤ 0, d2 ≥ 0}. Let

d = (0, 1)T ∈ T (x (2)), Jd = {1}, dT Qd = 2 > 0 = −2dT (Qx (2) + b)
td , then the condition

(2.7.2) does not hold.
For x (3) = (0, 1.5)T , I (x (3)) = {1, 3}, T (x (3)) = {d ∈ R2 : d1 ≥ 0, d1 + 4d2 ≤ 0}. Let

d = (2,−1)T ∈ T (x (3)), Jd = {2, 4}, td = 1, dT Qd = 10 > 6 = −2dT (Qx (3) + b), the
condition (2.7.2) does not hold.
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For x (4) = (0, 0)T , I (x (4)) = {3, 4}, T (x (4)) = {d ∈ R2 : d1 ≥ 0, d2 ≥ 0}. Let

d = (0, 1)T ∈ T (x (4)), Jd = {1}, dT Qd = 2 > 0 = −2dT (Qx (4) + b)
td , the condition

(2.7.2) does not hold.
This example clearly indicates that the conditions in Theorem 2.7 are sufficient and nec-

essary conditions of a feasible point of problem (P) being a global optimal maximum.
Now we consider a quadratic minimization problem with a concave objective function

and box constraints.

(PB) min f (x) = 1
2 xT Qx + bT x

s.t. li ≤ xi ≤ ui , i = 1, . . . , n.

This problem can also be written as follows:

(PB1) max − f (x) = 1
2 xT (−Q)x − bT x

s.t. li ≤ xi ≤ ui , i = 1, . . . , n.

where Q is positive semidefinite.

Lemma 2.8 If x̄ ∈ Rn is a feasible point of problem (PB), then T (x̄) = {d ∈ Rn : di ≤ 0
if x̄i = ui ; di ≥ 0 if x̄i = li }. Furthermore, for d �= 0, d ∈ T (x̄), Jd �= ∅, and td =
min

{
mindi>0

ui − x̄i
di

,mindi<0
x̄i − li−di

}
.

Proof There are 2n constraints of problem (PB): the i-th is −eT
i x ≤ −li , and the n+i-th

is eT
i x ≤ ui , 1 ≤ i ≤ n. If x̄i = ui , then n + i ∈ I (x̄). If x̄i = li , then i ∈ I (x̄). To the

active constraints, the following inequalities should hold if d is a vector of T (x̄) denoted in
Theorem 2.7: eT

i d ≤ 0, for n + i ∈ I (x̄); and −eT
i d ≤ 0, for i ∈ I (x̄). All these mean

di ≤ 0, if x̄i = ui ; and di ≥ 0, if x̄i = li . So here T (x̄) = {d ∈ Rn : di ≤ 0 if x̄i = ui ;
di ≥ 0 if x̄i = li }.

Furthermore, let d �= 0, d ∈ T (x̄). If di > 0, then x̄i �= ui , the n+i-th constraint eT
i x ≤ ui

is inactive, n + i �∈ I (x̄). Since eT
i d > 0, we have n + i ∈ Jd . Also if di < 0, we have x̄i �= li

and i ∈ Jd . Thus the set Jd denoted in the Theorem 2.7 is nonempty when d �= 0.
Suppose d ∈ T (x̄). If di = 0, then −eT

i d = eT
i d = 0, i �∈ Jd , n + i �∈ Jd . Thus if

j = n + i ∈ Jd , then di �= 0 and
b j − aT

j x̄

aT
j d

= ui − eT
i x̄

eT
i d

= ui − x̄i
di

. If j = i ∈ Jd , then

di �= 0 and
b j − aT

j x̄

aT
j d

= −li − (−eT
i )x̄

−eT
i d

= x̄i − li−di
. So

td = min
j∈Jd

b j − aT
j x̄

aT
j d

= min
1≤i≤n

{

min
di>0

ui − x̄i

di
,min

di<0

x̄i − li
−di

}

.

The proof is completed.

Theorem 2.9 Consider problem (PB) with Q a negative semidefinite symmetric matrix. A
feasible point x̄ is a global minimizer of (PB) if and only if for all d ∈ T (x̄) = {d ∈ Rn :
di ≤ 0 if x̄i = ui ; di ≥ 0 if x̄i = li }, the following two inequalities hold:
(2.9.1) dT (Qx̄ + b) ≥ 0;

(2.9.2) −dT Qd ≤ 2dT (Qx̄ + b)
td , td = min1≤i≤n,di �=0

{
ui − li|di |

}
.
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Proof Over a polytope, a concave function attains its minimum at a vertex of the polytope.
What we need to do, is to discuss the points satisfying xi = ui or xi = li for all 1 ≤ i ≤ n.
Suppose x̄ is a vertex, by Lemma 2.8, for all d ∈ T (x̄), x̄i = li when di > 0 and x̄i = ui when

di < 0. So td = min1≤i≤n,di �=0

{
ui − li|di |

}
. Thus from Theorem 2.7 and the equivalence of

(PB) and (PB1), we can obtain the conclusion.

Corollary 2.10 Consider problem (PB) with Q a negative semidefinite symmetric matrix. If
x̄ is a vertex satisfying
(2.10.1) −λn(Q)(ui − li )+ 2(Qx̄ + b)i ≤ 0, if x̄i = ui ;
(2.10.2) −λn(Q)(ui − li )− 2(Qx̄ + b)i ≤ 0, if x̄i = li ,
then x̄ is a global minimizer of problem (PB).

Proof Let x̄ be a vertex and d ∈ T (x̄). If di �= 0, then td ≤ ui − li|di | . Since λn(Q) ≤ 0, if

x̄i = ui , (Qx̄ + b)i ≤ 1
2λn(Q)(ui − li ) ≤ 0. By Lemma 2.8, di ≤ 0, thus di (Qx̄ + b)i ≥ 0,

di (Qx̄ + b)i
td ≥ λn(Q)

2td
di (ui − li ) ≥ −1

2λn(Q)d2
i . If x̄i = li , by (2.10.2) and di ≥ 0,

we have di (Qx̄ + b)i ≥ 0, di (Qx̄ + b)i
td ≥ −λn(Q)

2td
di (ui − li ) ≥ −1

2λn(Q)d2
i . Thus

dT (x̄ + b) ≥ 0 and

2dT (Qx̄ + b)

td
≥ −λn(Q)

∑

1≤i≤n

d2
i = −

(

min
y �=0

yT Qy

yT y

)

(dT d) ≥ −dT Qd.

By Theorem 2.9, x̄ is a global minimizer of problem (PB).

Corollary 2.11 Consider problem (PB) with Q = (qi j ) a negative semidefinite symmetric
matrix. If x̄ is a global minimizer of (PB), then
(2.11.1) 2(Qx̄ + b)i ≥ max(−qii (ui − li ), 0) if xi = li ;
(2.11.2) 2(Qx̄ + b)i ≤ min(qii (ui − li ), 0) if xi = ui .

Proof If x̄i = ui , let d(1) = −ei ∈ T (x̄). By Lemma 2.8, td(1) = ui − li . From (2.9.1),

d(1)(Qx̄+b) = −(Qx̄+b)i ≥ 0. From (2.9.2), d(1)T (−Q)d(1) = −qii ≤ 2d(1)(Qx̄ + b)
td(1)

=
−2(Qx̄ + b)i

ui − li
.

If x̄i = li , let d(2) = ei ∈ T (x̄), td(2) = ui − li . By Theorem 2.9, d(2)(Qx̄ + b) =
(Qx̄ + b)i ≥ 0, d(2)T (−Q)d(2) = −qii ≤ 2d(2)(Qx̄ + b)

td(2)
= 2(Qx̄ + b)i

ui − li
. Thus (2.11.1)

and (2.11.2) hold and the proof is completed.

The above necessary condition and sufficient condition are obtained by the necessary and
sufficient condition directly. These conditions can also be obtained from the results in [15].
In that paper, the authors presented necessary conditions and sufficient conditions for a given
feasible point to be a global minimizer of the difference of quadratic and convex functions
subject to bounds on the variables.

3 Quadratic 0-1 programming

Now we focus our attention on the problem of quadratic 0-1 programming

(D) min f (x) = 1
2 xT Qx + bT x

s.t. x ∈ {0, 1}n .
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For x̄ ∈ {0, 1}n , we denote E(x̄) = {i : x̄i = 1, i = 1, . . . , n}, N0 = {1, . . . , n}.
Theorem 3.1 Consider problem (D) with Q a negative semidefinite symmetric matrix. x̄ ∈
{0, 1}n, then x̄ is a global minimizer of (D) if and only if for all d ∈ T (x̄) = {d ∈ Rn : di ≤ 0
if i ∈ E(x̄); di ≥ 0 if i ∈ N0\E(x̄)}, the following two inequalities hold:
(3.1.1) dT (Qx̄ + b) ≥ 0;
(3.1.2) −dT Qd ≤ 2 ‖ d ‖∞ dT (Qx̄ + b).

Proof Suppose 0 ≤ x̄ ≤ e, by Lemma 2.8, for all i = 1, . . . , n, ui = 1 and li = 0,
T (x̄) = {d ∈ Rn : di ≤ 0 if x̄i = 1; di ≥ 0 if x̄i = 0}. If d ∈ T (x̄), d �= 0, td = 1‖d‖∞ .

Thus (3.1.1) and (3.1.2) can be obtained from Theorem 2.9 and the proof is completed.

We denote T (x̄) = {d ∈ Rn : di ≤ 0 if x̄i = 1; di ≥ 0 if x̄i = 0} = {d ∈ Rn : di ≤ 0 if
i ∈ E(x̄); di ≥ 0 if i ∈ N0\E(x̄)} for problem (D) in this section.

Now suppose Q is a real symmetric matrix and λ1(Q) is the largest eigenvalue of Q. If
λ1(Q) > 0, then the problem (D) isn’t a negative semidefinite problem. But Q − λ1(Q)I
becomes a negative semidefinite matrix. When x ∈ {0, 1}n , we have xT x = eT x . So problem
(D) can be written as following:

(D) min f (x) = 1
2 xT (Q − λ1(Q)I )x + (b + 1

2λ1(Q)e)T x
s.t. x ∈ {0, 1}n,

which is a negative semidefinite quadratic 0-1 programming. The following result is then an
immediate consequence of Theorem 3.1.

Theorem 3.2 Consider problem (D) with Q a real symmetric matrix. Let x̄ ∈ {0, 1}n. Then
x̄ is a global solution of problem (D) if and only if for all d ∈ T (x̄), the following two
conditions hold:
(3.2.1) dT [Qx̄ + b + λ1(Q)

(
1
2 e − x̄

)
] ≥ 0 ;

(3.2.2) −dT Qd + λ1(Q)‖d‖2 ≤ 2‖d‖∞dT [Qx̄ + b + λ1(Q)
(

1
2 e − x̄)

]
.

Remark 1 If we choose µ ≤ −λ1(Q), then Q + µI will be negative semidefinite. Thus
λ1(Q) in Theorem 3.2 can be replaced by µ.

Remark 2 As we know, λn(Q)I − Q is also a negative semidifinite matrix. But 1
2 xT (λn(Q)

I − Q)x − (b + 1
2λn(Q)e)T x = − f (x) for x ∈ {0, 1}n . So we can get similar results for

solving the problem max{1
2 xT Qx + bT x : x ∈ {0, 1}n}.

In classical optimality theory, the first-order necessary condition is often expressed with
the help of a multiplier. Here condition (3.2.1) is a first-order condition but the vector d can
be removed from it without any dual variables.

Lemma 3.3 Consider problem (D) with Q a real symmetric matrix. Let x̄ ∈ {0, 1}n, X̄ be
the diagonal matrix with the ith element x̄i , T (x̄) = {d ∈ Rn : di ≤ 0 if i ∈ E(x̄); di ≥ 0 if
i ∈ N0\E(x̄)}. Then the following conditions are equivalent:

(3.2.1) dT [Qx̄ + b + λ1(Q)
(

1
2 e − x̄

)
] ≥ 0, d ∈ T (x̄);

(3.2.3) Qx̄ + b + λ1(Q)
(

1
2 e − x̄

)
∈ T (x̄);

(3.2.4) 2(2X̄ − I )(Qx̄ + b) ≤ λ1(Q)e.
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Proof Let p = Qx̄ + b + λ1(Q)
(

1
2 e − x̄

)
. (3.2.3) means for i ∈ E(x̄), pi ≤ 0; and for

i ∈ N0\E(x̄), pi ≥ 0. So (3.2.1) can be gotten from (3.2.3). If (3.2.1) holds while (3.2.3)
doesn’t hold, suppose ∃i0 ∈ E(x̄), pio > 0, let d = −ei0 , then dT p < 0 will contradict with
(3.2.1). So (3.2.3) always holds when (3.2.1) holds.

Since i ∈ E(x̄) ⇔ x̄i = 1 ⇔ 2x̄i − 1 = 1; and i ∈ N0\E(x̄) ⇔ x̄i = 0 ⇔
2x̄i − 1 = −1, then (3.2.3) is equivalent to (2x̄i − 1)pi ≤ 0, ∀i = 1, . . . , n. That is

(2X̄ − I )[Qx̄ + b +λ1(Q)
(

1
2 e − x̄

)
] ≤ 0. Furthermore, when x̄ ∈ {0, 1}n , (2X̄ − I )2 = I .

Thus
(
2X̄ − I

) (
Qx̄ + b + λ1(Q)

(
1
2 e − x̄

))

= (2X̄ − I )(Qx̄ + b + 1
2λ1(Q)(I − 2X̄)e)

= (2X̄ − I )(Qx̄ + b)− 1
2λ1(Q)e ≤ 0.

Condition (3.2.4) is gotten and the proof is completed.

In [2], the authors obtained a sufficient global optimality condition for the problem

min
{

1
2 xT Qx + bT x : x ∈ {−1, 1}n

}
. The condition was expressed as [SC]: X̄ Q X̄e+ X̄b ≤

λn(Q)e. Similarly, for the problem (D): min{1
2 xT Qx + bT x : x ∈ {0, 1}n}, if x̄ ∈ {0, 1}n

and

[SC] 2(2X̄ − I )(Qx̄ + b) ≤ λn(Q)e

holds, then x̄ is a global solution of (D). By Lemma 3.3, we notice that there is some
relations between [SC] and Theorem 3.2 in a hidden form. If we weaken [SC] to (3.2.4),
complemented with (3.2.2), the sufficient global optimality condition given by A.Beck and
M.Teboulle becomes a necessary and sufficient global optimality condition for quadratic 0-1
problems.

Furthermore, A.Beck and M.Teboulle also gave a necessary condition for min{1
2 xT Qx +

bT x : x ∈ {−1, 1}n}. That is [NC]: X̄ Q X̄e+ X̄b ≤ Diag(Q)e, where Diag(Q) denotes the
diagonal matrix with entries qii . With the help of this result, Theorem 3.2 can be modified
as follows:

Theorem 3.4 Consider problem (D) with Q a real symmetric matrix. Let x̄ ∈ {0, 1}n. Then
x̄ is a global solution of problem (D) if and only if the following two conditions hold:
(3.4.1) 2(2X̄ − I )(Qx̄ + b) ≤ Diag(Q)e;

(3.2.2) −dT Qd + λ1(Q)‖d‖2 ≤ 2‖d‖∞dT
[

Qx̄ + b + λ1(Q)
(

1
2 e − x̄

)]
, d ∈ T (x̄).

Proof For a real matrix Q, for i = 1, . . . , n, λ1(Q) = max‖y‖=1 yT Qy ≥ eT
i Qei = qii . If

(3.4.1) holds, then we have 2(2X̄ − I )(Qx̄ + b) ≤ Diag(Q)e ≤ λ1(Q)e. Thus when (3.4.1)
and (3.2.2) hold, the conditions in Theorem 3.2 are satisfied and x̄ is a global solution of (D).

Conversely, If x̄ is a global minimum of (D), then ∀z ∈ {0, 1}n , q(x̄) ≤ q(z). Let
z = z1 := (1 − 2x̄1)e1 + x̄ = (1 − x̄1, x̄2, . . . , x̄n) ∈ {0, 1}n , e1 = (1, 0, . . . , 0)T , then from
(1 − 2x̄1)

2 = 1,

q(x̄) = 1
2 x̄ T Qx̄ + bT x̄

≤ q(z1) = 1
2 ((1 − 2x̄1)e1 + x̄)T Q((1 − 2x̄1)e1 + x̄)+ bT ((1 − 2x̄1)e1 + x̄)

= 1
2

(
(1 − 2x̄1)

2eT
1 Qe1 + 2(1 − 2x̄1)eT

1 Qx̄ + x̄ T Qx̄
) + (1 − 2x̄1)bT e1 + bT x̄

= q(x̄)+ 1
2 eT

1 Qe1 + (1 − 2x̄1)eT
1 Qx̄ + (1 − 2x̄1)bT e1.
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Since eT
1 Qe1 = q11, the inequality reduces to 2(2x̄1 − 1)(Qx̄ + b)T e1 ≤ q11. For i =

1, . . . , n, we can get 2(2x̄i − 1)(Qx̄ + b)T ei ≤ qii similarly. So (3.4.1) holds and the proof
is completed.

The condition (3.4.1) is only a necessary condition. This is illustrated by the following
example.

Example Consider the problem (D) with Q =
⎛

⎝
−2 3 5
3 −8 −1
5 −1 9

⎞

⎠, and b = (−2, 3,−1)T .

The global solution is x̄ = (1, 0, 0)T . λ1(Q) = 10.9343, λ2 = −2.2102, λ3 = −9.7241.
For y = (0, 1, 0)T , 2(2Y − I )(Qy + b) = (−2,−10, 4)T ≤ Diag(Q)e ≤ λ1(Q)e. So all
the first-order conditions are satisfied. But y isn’t a global solution since (3.2.2) doesn’t hold
if we let d = (2.5,−3, 0.1)T .

Next theorem shows that in the case where Q is a diagonal matrix, (3.4.1) becomes nec-
essary and sufficient for global optimality. For related results, see [15].

Theorem 3.5 Consider problem (D) with Q = (qii ) a diagonal matrix. Let x̄ ∈ {0, 1}n. Then
x̄ is a global solution of problem (D) if and only if (3.4.1) holds, i.e. 2(2X̄ − I )(Qx̄ +b) ≤ Qe.

Proof For x̄ ∈ {0, 1}n , d ∈ T (x̄), denote ||d||∞ = |dk |, qss = max1≤i≤n(qii ), then λ1(Q) =
qss . Suppose 2(2X̄ − I )(Qx̄ + b) ≤ Qe holds. If x̄i = 1, then di ≤ 0 and 2(Qx̄ + b)i ≤
qii , 2|dk |di (Qx̄ + b)i ≥ |dk |di qii ≥ |di |di qii = −d2

i qii . If x̄i = 0, then di ≥ 0 and
−2(Qx̄ + b)i ≤ qii , 2|dk |di (Qx̄ + b)i ≥ −|dk |di qii ≥ −|di |di qii = −d2

i qii . Thus

2||d||∞dT (Qx̄ + b) = 2|dk |dT (Qx̄ + b) =
∑

1≤i≤n

2|dk |di (Qx̄ + b)i ≥ −dT Qd. (5)

Furthermore, if x̄i = 0, then di ≥ 0, di

(
1
2 − x̄i

)
= di

2 . If x̄i = 1, then di ≤ 0,

di

(
1
2 − x̄i

)
= −di

2 = |di |
2 . So 2dT

(
1
2 e − x̄

)
= ∑

1≤i≤n |di |.

2||d||∞λ1(Q)d
T

(
1

2
e − x̄

)

= |dk |qss

∑

1≤i≤n

|di | ≥ qss

∑

1≤i≤n

d2
i = λ1(Q)||d||2. (6)

By (5) and (6), we obtain

2||d||∞dT (Qx̄ + b)+ 2||d||∞λ1(Q)d
T

(
1

2
e − x̄

)

≥ −dT Qd + λ1(Q)||d||2.

So when Q is a diagonal matrix, (3.2.2) will hold if (3.4.1) holds. The result can be obtained
by Theorem 3.4 and the proof is completed.

Now we establish some global necessary conditions as corollaries of Theorem 3.2.

Corollary 3.6 Consider problem (D) with Q = (qi j ) a real symmetric matrix. If x̄ ∈ {0, 1}n

is a global minimum of problem (D) and q = (q11, . . . , qnn)
T , then

(3.6.1)
(

1
2 e − x̄

)
∈ T (x̄),

(3.6.2) 2(Qx̄ + b)+ (I − 2X̄)q ∈ T (x̄),
(3.6.3) 2(Qx̄ + b)+ (I − 2X̄)α ∈ T (x̄), for all α ∈ Rn, α ≥ q,
(3.6.4) 2(Qx̄ + b)+ λ1(Q)(e − 2x̄) ∈ T (x̄).
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Proof For x̄ ∈ {0, 1}n , (3.6.1) holds obviously. If x̄ is a global minimum of problem (D), by
(3.4.1), 2(2x̄i − 1)(Qx̄ + b)i − qii ≤ 0 holds for all 1 ≤ i ≤ n. If i ∈ E(x̄), x̄i = 1, then
2(Qx̄ + b)i − qii ≤ 0. If i ∈ N0\E(x̄), x̄i = 0, then 2(Qx̄ + b)i + qii ≥ 0. Thus (3.6.2)
holds. Since αi ≥ qii , −αi ≤ −qii , (3.6.3) also holds. (3.6.4) will hold if we set α = λ1(Q)e
in (3.6.3). That completes the proof.

These vectors are special elements of T (x̄). They can be used to check the conditions in
Theorem 3.2. The necessary conditions presented in next theorem are some results expressed
in a simple way.

Theorem 3.7 Consider problem (D) with Q = (qi j ) a real symmetric matrix. Suppose
α ∈ Rn, α ≥ q = (q11, . . . , qnn)

T . If x̄ ∈ {0, 1}n is a global minimum of problem (D), then
we have
(3.7.1) 2(e − 2x̄)T (Qx̄ + b)+ nλ1(Q) ≥ 0,
(3.7.2) (e − 2x̄)T (Qe + 2b) ≥ 0,
(3.7.3) 2||Qx̄ + b||2 + (Qx̄ + b)T (I − 2X̄)(λ1(Q)e + q)+ 1

2λ1(Q)qT e ≥ 0,

(3.7.4) 2||Qx̄ + b||2 + (Qx̄ + b)T (I − 2X̄)(λ1(Q)e + α)+ 1
2λ1(Q)αT e ≥ 0.

Proof If x̄ ∈ {0, 1}n is a global minimum of problem (D), from
(

1
2 e − x̄

)
∈ T (x̄) and

(3.2.1),
(

1
2 e − x̄

)T [
(Qx̄ + b)+ λ1(Q)

(
1
2 e − x̄

)]
=

(
1
2 e − x̄

)T
(Qx̄ + b)+ 1

4 nλ1(Q) ≥ 0.

So the condition (3.7.1) holds. From condition (3.2.2), we have

−
(

1
2 e − x̄

)T
Q

(
1
2 e − x̄

)
+ λ1(Q)‖1

2 e − x̄‖2 ≤
[(

1
2 e − x̄

)T
(Qx̄ + b)+ 1

4 nλ1(Q)

]

(
1
2 e − x̄

)T [
(Qx̄ + b)+ Q

(
1
2 e − x̄

)]
≥ 0

(e − 2x̄)T (Qe + 2b) ≥ 0.

(3.7.2) holds. Furthermore, by (3.6.2) and (3.2.1),
[
2(Qx̄ + b)+ (I − 2X̄)q

]T
[
(Qx̄ + b)+ λ1(Q)

(
1
2 e − x̄

)]

= 2||Qx̄ + b||2 + λ1(Q)(Qx̄ + b)T (e − 2x̄)

+ qT (I − 2X̄)(Qx̄ + b)+ 1
2λ1(Q)qT (I − 2X̄)(e − 2x̄)

= 2||Qx̄ + b||2 + (Qx̄ + b)T (I − 2X̄)(λ1(Q)e + q)+ 1
2λ1(Q)qT e ≥ 0.

(3.7.3) holds. (3.7.4) can be proved similarly. Thus we get the necessary conditions expressed
in the theorem and the proof is completed.

4 Minimization of half-products

In this section, we consider half-products, a special subclass of quadratic pseudo-Boolean
functions, defined by multilinear polynomial expressions of the following form

h(x) =
∑

1≤i< j≤n

ai b j xi x j −
n∑

i=1

ci xi ,

where a = (a1, . . . , an)
T , b = (b1, . . . , bn)

T and c = (c1, . . . , cn)
T are non-negative inte-

ger vectors. Pseudo-Boolean functions appearing in polynomial representation play a major
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role in optimization models in a variety of areas. It can be shown that the minimization of
half-products is NP-hard.

Denote A = diag(a), B =

⎛

⎜
⎜
⎜
⎜
⎝

0 b2 b3 . . . bn

0 0 b3 . . . , bn

. . .

0 0 0 . . . bn

0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎠
, and H = AB + BT A,

then H is a symmetric matrix and the problem of minimization of half-products can be
expressed as follows:

(H P P) min h(x) = 1
2 xT H x − cT x

s.t. x ∈ {0, 1}n .

The results in section three can be applied to problem (HPP). Since the necessary con-
ditions can be checked easily and actually implemented, here we present some necessary
conditions especially. By (3.2.1), (3.7.1) (3.7.2) (3.7.3) and Diag(H) = O , it is easy to
obtain the next theorem.

Theorem 4.1 If x̄ is a global minimizer of (HPP), then
(4.1.1) (2X̄ − I )(H x̄ − c) ≤ 0;
(4.1.2) 2(e − 2x̄)T (H x̄ − c)+ nλ1(H) ≥ 0;
(4.1.3) (e − 2x̄)T (He − 2c) ≥ 0;
(4.1.4) 2||H x̄ − c||2 + λ1(H)(H x̄ − c)T (e − 2x̄) ≥ 0.

To give a more detailed overview of all these results, we deliver following theorem.

Theorem 4.2 If x̄ is a global minimizer of (HPP), β = Be, then
(4.2.1) aTβ − cT (e − 2x̄) ≥ 0;
(4.2.2) (Ax̄)Tβ + (Bx̄)T a ≤ aTβ − cT (e − 2x̄);
(4.2.3) aT (Bx̄)+ βT (Ax̄)− 4(Ax̄)T (Bx̄) ≥ (e − 2x̄)T c − n

2λ1(H);
(4.2.4) 4(Ax̄)T (Bx̄)+ 2(e − 2x̄)T c ≤ aTβ + n

2λ1(H).

Proof If x̄ ∈ {0, 1}n is a global minimum of problem (HPP), by (4.1.3),

(e − 2x̄)T He = eT (ABe + BT Ae)− 2x̄ T (ABe + BT Ae)
= aTβ + βT a − 2(Ax̄)Tβ − 2(Bx̄)T a
= 2aTβ − 2(Ax̄)Tβ − 2(Bx̄)T a
≥ 2cT (e − 2x̄).

Since a = Ae ≥ 0, β = Be ≥ 0, x̄ ∈ {0, 1}n , then

0 ≤ (Ax̄)Tβ + (Bx̄)T a ≤ aTβ − cT (e − 2x̄).

(4.2.1) and (4.2.2) hold. Also, by (4.1.2),

(e − 2x̄)T H x̄ = eT (ABx̄ + BT Ax̄)− 2x̄ T (ABx̄ + BT Ax̄)
= aT Bx̄ + βT Ax̄ − 2(Ax̄)T (Bx̄)− 2(Bx̄)T (Ax̄)
= aT Bx̄ + βT Ax̄ − 4(Ax̄)T (Bx̄)
≥ cT (e − 2x̄)− n

2λ1(H).

Thus we obtain (4.2.3). Furthermore, by (4.2.2) and (4.2.3), (4.2.4) can be obtained imme-
diately.
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Since for x̄ ∈ {0, 1}n , (H x̄)i = bi
∑

1≤ j<i (a j x̄ j ) + ai
∑

i< j≤n(b j x̄ j ), some corollaries
can be drawn from (4.1.1) and (4.1.2).

Corollary 4.3 If x̄ is a global minimizer of (HPP), then for 1 ≤ i ≤ n,

bi

∑

1≤ j<i

(a j x̄ j )+ ai

∑

i< j≤n

(b j x̄ j ) ≤ ci , i f x̄i = 1;

bi

∑

1≤ j<i

(a j x̄ j )+ ai

∑

i< j≤n

(b j x̄ j ) ≥ ci , i f x̄i = 0.

Corollary 4.4 If x̄ is a global minimizer of (HPP), then
∑

i< j,x̄i =x̄ j =1

(−2ai b j )+
∑

i< j,x̄i �=x̄ j

ai b j ≥ 2
∑

x̄i =0

ci − 2
∑

x̄i =1

ci − nλ1(H).

Proof (e − 2x̄)T c = ∑
x̄i =0 ci − ∑

x̄i =1 ci . By (4.1.2),

(e − 2x̄)T H x̄ =
∑

1≤i≤n

( ∑

j<i

(1 − 2x̄i )x̄ j bi a j +
∑

j>i

(1 − 2x̄i )x̄ j ai b j

)

=
∑

1≤i≤n

⎛

⎝
∑

j<i,x̄i =x̄ j =1

−bi a j +
∑

j<i,x̄i =0,x̄ j =1

bi a j +
∑

j>i,x̄i =x̄ j =1

−ai b j

+
∑

j>i,x̄i =0,x̄ j =1

ai b j

⎞

⎠

=
∑

1≤i≤n

⎛

⎝
∑

i< j,x̄i =x̄ j =1

−ai b j +
∑

i< j,x̄ j =0,x̄i =1

ai b j +
∑

i< j,x̄i =x̄ j =1

−ai b j

+
∑

i< j,x̄i =0,x̄ j =1

ai b j

⎞

⎠

=
∑

i< j,x̄i =x̄ j =1

(−2ai b j )+
∑

i< j,x̄i �=x̄ j

ai b j ≥ 2
∑

x̄i =0

ci − 2
∑

x̄i =1

ci − nλ1(H).

The proof is completed.

5 Further results of quadratic 0-1 programming

In many quadratic integer programming problems, if the dimensions of the matrixes are
quite big, both the speed and the accuracy of calculation will be influenced by the size of the
problems. In this section, we try to reduce the dimensions expressed in our global optimal-
ity conditions. We will give some necessary global optimality conditions of quadratic 0-1
programming problems which may be used easier than those in last section.

First, for x̄ ∈ {0, 1}n , E(x̄) = {i : x̄i = 1, i = 1, . . . , n}, let m = |E(x̄)|. We denote a
sub-matrix Q̄ of Q and a sub-vector b̄ of b as follows: if and only if i, j ∈ E(x̄), qi j and bi

can be remained in Q̄ and b̄ in original order. Then we consider the following problem:

(D̄) min q̄(x) = 1
2 xT Q̄x + b̄T x

s.t. x ∈ {0, 1}m .
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We obtain a theorem as follows:

Theorem 5.1 If x̄ is a global solution of problem (D), then e(m) = (1, 1, . . . , 1)T ∈ Rm is
a global solution of the problem (D̄).

Proof Suppose the k1, k2, . . . , km elements of x̄ are 1, and the other elements of x̄ are 0. For
all x ∈ {0, 1}m , let y ∈ {0, 1}n , of which yki = xi , i = 1, . . . ,m, and the other elements of
y are 0. Then we have q̄(x) = q(y) ≥ q(x̄) = q̄(e(m)). So e(m) is the global minimum of
problem (D̄).

In Theorem 5.1, it is clear that m ≤ n. If m = n, then e is the global solution of problem
(D). If m < n, the dimensions in global optimality conditions of problem (D) can be reduced
from n to m by checking whether e(m) is the global solution of problem (D̄). For the case e
being a global solution, although we can use the results expressed in last section directly, it
is interesting to get some further results which may be used easier.

Theorem 5.2 Consider the problem (D) with Q a real symmetric matrix. Then e is the global
minimum of (D) if and only if 0 is the global solution of the following problem

(D0) min xT Q0x
s.t. x ∈ {0, 1}n,

where Q0=(q(0)i j ) is an n × n matrix. For i, j = 1, . . . , n, if i �= j , q(0)i j = qi j ; if i = j ,

q(0)i i = qii − 2bi − 2
∑n

j=1 qi j .

Proof Let u = −1
2 (Qe + b). The elements of the vector u is ui = −1

2 (
∑n

j=1 qi j + bi ),
i = 1, . . . , n. Let U = diag(u) be the diagonal n × n matrix with ith diagonal element ui .
Then the diagonal elements of Q + 4U are qii − 2(

∑n
j=1 qi j + bi ) = q(0)i i , i = 1, . . . , n.

Thus Q + 4U = Q0.
For y ∈ {0, 1}n , ∀i = 1, . . . , n, y2

i = yi , and e − y ∈ {0, 1}n .

yT Q0 y = yT (Q + 4U )y = yT Qy + 4
∑n

i=1 ui y2
i= yT Qy + 4

∑n
i=1 ui yi = yT Qy + 4yT u

= yT Qy + 4yT (−1
2 )(Qe + b) = yT Qy − 2yT Qe − 2yT b.

So we have

q(e − y)− q(e) = 1
2 (e − y)T Q(e − y)+ (e − y)T b − 1

2 eT Qe − eT b

= −yT Qe + 1
2 yT Qy − yT b

= 1
2 yT Q0 y.

If e is the global minimum of (D), then for all y ∈ {0, 1}n , q(e − y) − q(e) ≥ 0, which
means yT Q0 y ≥ 0. Conversely, if 0 is the global minimum of problem (D0), then for all
y ∈ {0, 1}n , yT Q0 y ≥ 0 implies q(e − y) ≥ q(e). Thus we know e is the global minimum
of problem (D) because y is arbitrary in {0, 1}n . That completes the proof.

Corollary 5.3 Under the hypotheses posed in Theorem 5.2, if Q0 is positive semidefinite on
Rn (Q0 � 0), or all the elements of Q0, q(0)i j ≥ 0 (Q0 ≥ 0), then e is the global minimum of
problem (D).

The proof is simple. We also can say “0 is the global solution of problem (D0)” means
“Q0 is positive semidefinite on {0, 1}n”. But Q0 may not be positive semidefinite on Rn even
if e is a strict global minimum of problem (D).
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Example Let Q =
(−5 2

2 −6

)

, e is the only one global minimum of q(x) = xT Qx on

{0, 1}n . But the matrix Q0 =
(

1 2
2 2

)

is indefinite because its eigenvalues are λ1 = 3 + √
17

2

and λ2 = 3 − √
17

2 .

We use the symbols Q̄, b̄ and e(m) the same as in Theorem 5.1. Similarly, if Q̄ = (q̄i j )m×m ,

then Q̄0 denotes an m × m matrix (q̄(0)i j ). For i, j = 1, . . . ,m, if i �= j , q̄(0)i j = q̄i j ; if i = j ,

q̄(0)i i = q̄i i − 2b̄i − ∑n
j=1(q̄i j + q̄ j i ). Then we have some necessary conditions.

Theorem 5.4 Consider the problem (D) with Q a real symmetric matrix. If x̄ is a global
solution of (D) then the following inequalities hold:
(5.4.1) λ1(Q̄0) > 0 or Q̄ = −2diag(b̄),
(5.4.2) e(m)T Q̄0e(m) ≥ 0,
(5.4.3) Q̄e(m) + b̄ ≤ 1

2 Diag(Q̄)e(m),

(5.4.4) mλ1(Q̄)− 2e(m)T (Q̄e(m) + b̄) ≥ 0.

Proof If x̄ is a global minimum of (D), by Theorem 5.1, e(m) is the global solution of
min{1

2 xT Q̄x + b̄ : x ∈ Rm}. According to (3.4.1), (5.4.3) holds. Condition (5.4.4) can be
gotten from (3.7.1) directly.

Moreover, based on theorems in this section, if x̄ is a global minimum of (D), then
0 is the global minimum of min

{
xT Q̄0x : x ∈ {0, 1}m

}
. Thus from the condition (3.7.1),

mλ1(Q̄0) ≥ 0. If λ1(Q̄0) = 0, then Q̄0 is negative semidefinite. So xT Q̄0x ≤ 0 for all
x ∈ Rm . But 0 is the global minimum of min

{
xT Q̄0x : x ∈ {0, 1}m

}
, xT Q̄0x ≥ 0 for all

x ∈ {0, 1}m , thus we must have xT Q̄0x = 0 for all x ∈ {0, 1}m . ∀i, j = 1, . . . ,m, let x = ei

and x = ei + e j , we can get q̄(0)i i = 0 and q̄(0)i j = 0. So Q̄0 = 0. If i �= j , q̄(0)i j = q̄i j = 0. If

i = j , q̄(0)i i = q̄i i − 2b̄i −∑n
j=1(q̄i j + q̄ j i ) = 0. So q̄i i = −2b̄i i and Q̄ = −2diag(b̄). Thus

(5.4.1) will hold when x̄ is a global minimum of (D). Again from (3.7.2), we can get (5.4.2)
immediately since 0 is the global minimum of min{xT Q̄0x : x ∈ {0, 1}m}. That completes
the proof.

All the conditions in Theorem 5.4 are expressed in a simple way without the vector d . The
condition (5.4.2) and (5.4.3) need not calculate the eigenvalues. That will be convenient to
use. Let’s review the example in Sect. 3.

Example Consider the problem (D) with Q =
⎛

⎝
−2 3 5
3 −8 −1
5 −1 9

⎞

⎠, and b = (−2, 3,−1)T .

The global solution is x̄ = (1, 0, 0)T . For x (1) = (1, 1, 0), Q̄ =
(−2 3

3 −8

)

, b̄ = (−2, 3)T .

Q̄0 =
(

0 3
3 −14

)

, eT Q̄0e = −8 < 0. Thus x (1) is not a global solution. Also we know

(5.4.2) does not hold for x (2) = (0, 1, 1)T and neither (5.4.3) does for x (3) = (1, 0, 1)T and
x (4) = (1, 1, 1)T . For x (5) = (0, 0, 1)T , Q̄ = 9 and b̄ = −1. So 1 is not the global solution
of q̄(x) = 9

2 x2 − x . So most feasible points in this problem, except y = (0, 1, 0)T , would
be taken away from the set of the global minima in a simple way.
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